El Grupo de Ciencias Planetarias de la Universidad del País Vasco desentraña el funcionamiento de la mayor tormenta desarrollada en el Sistema Solar: la Gran Mancha Blanca de Saturno de 2010
.
Domingo 23 de junio de 2013 | UNIVERSIDAD DEL PAÍS VASCO
................................................................................................................................................................
.
Ya se conocen las claves para entender la naturaleza de las tormentas gigantes de Saturno. A través del análisis de las imágenes enviadas por la nave espacial Cassini de las agencias espaciales norteamericana (NASA) y europea (ESA), los modelos de ordenador de la tormenta y el examen de sus nubes, el Grupo de Ciencias Planetarias de la Universidad del País Vasco ha logrado explicar por primera vez el comportamiento de estas tormentas. El artículo, liderado por Enrique García Melendo, investigador de la Fundació Observatori Esteve Duran – Institut de Ciències de l’Espai, se publica en la revista Nature Geosciences.
Aproximadamente una vez cada año de Saturno, equivalente a unos 30 años de la Tierra, se produce en el planeta de los anillos una tormenta de enormes proporciones que afecta al aspecto de su atmósfera a escala global. Estas tormentas gigantes se denominan Grandes Manchas Blancas por el aspecto que presentan sobre la atmósfera del planeta. La primera observación de una de ellas se realizó en 1876; la Gran Mancha Blanca de 2010 fue la sexta en ser observada. En esa ocasión la nave espacial Cassini pudo obtener imágenes de muy alta resolución de la gran estructura meteorológica.
Aproximadamente una vez cada año de Saturno, equivalente a unos 30 años de la Tierra, se produce en el planeta de los anillos una tormenta de enormes proporciones que afecta al aspecto de su atmósfera a escala global. Estas tormentas gigantes se denominan Grandes Manchas Blancas por el aspecto que presentan sobre la atmósfera del planeta. La primera observación de una de ellas se realizó en 1876; la Gran Mancha Blanca de 2010 fue la sexta en ser observada. En esa ocasión la nave espacial Cassini pudo obtener imágenes de muy alta resolución de la gran estructura meteorológica.
.
.
La tormenta se desarrolló a partir de una pequeña nube blanca brillante en las latitudes medias del hemisferio norte, que fue creciendo rápidamente y permaneció activa durante más de siete meses. Durante ese tiempo generó una amalgama de nubes blancas que se expandieron hasta formar un anillo nuboso y turbulento con una extensión de miles de millones de kilómetros cuadrados. El Grupo de Ciencias Planetarias presentó hace dos años un primer estudio de la tormenta que fue portada en la revista Nature del 7 de julio de 2011. Ahora, en el nuevo trabajo, desvelan los secretos ocultos del fenómeno estudiando al detalle “la cabeza” o “foco” de la Gran Mancha Blanca.
El equipo de astrónomos analizó imágenes tomadas por la sonda Cassini para medir los vientos en la “cabeza” de la tormenta, el foco donde se originó la actividad. En esa región la tormenta interacciona con la atmósfera circundante formando vientos sostenidos muy intensos con valores típicos de 500 kilómetros por hora. “No esperábamos encontrar una circulación tan violenta en la región de desarrollo de la tormenta, lo que es un síntoma de la interacción particularmente violenta entre la tormenta y la atmósfera del planeta”, comenta Enrique García. También han podido determinar que las nubes se elevan más de 40 km por encima de las nubes del propio planeta.
Información de los mecanismos que provocan otros fenómenos meteorológicos
El estudio desvela el mecanismo que genera esta fenomenología. El equipo de científicos diseñó modelos matemáticos capaces de reproducir la tormenta en un ordenador dando una explicación física del comportamiento de esta tormenta gigante y de su larga duración. Los cálculos muestran que el foco de la tormenta es profundo, unos 300 km por encima de las nubes visibles. La tormenta transportó ingentes cantidades de gas húmedo en vapor de agua a las capas más altas del planeta formando nubes visibles, y liberando enormes cantidades de energía. Esta inyección de energía interaccionó violentamente con los vientos dominantes de Saturno para producir un vendaval de 500 km/h. El estudio también mostró que, a pesar de la enorme actividad de la tormenta, esta no fue capaz de modificar sustancialmente el régimen de vientos dominante que soplan permanentemente en la misma dirección que los paralelos terrestres, pero sí interaccionó violentamente con ellos. Una parte importante de los cálculos por ordenador se realizaron gracias al Centre de Serveis Científics i Acadèmics de Catalunya (CESCA), y los medios informáticos del Institut de Ciències de l’Espai (ICE).
Más allá de la curiosidad por conocer los procesos físicos que subyacen a la formación de estas gigantescas tormentas en Saturno, el estudio de estos fenómenos permite conocer mejor los modelos empleados en el estudio de la meteorología y del comportamiento de la atmósfera terrestre, en un medio ambiente muy diferente e imposible de simular en un laboratorio. “Las tormentas de Saturno son, en cierto modo, un banco de pruebas de los mecanismos físicos que subyacen en la generación de fenómenos meteorológicos violentos semejantes en la Tierra” comenta Agustín Sánchez Lavega, director del Grupo de Ciencias Planetarias de la UPV/EHU.
Nature Geoscience es la revista especializa en geofísica, meteorología y ciencias planetarias del grupo Nature y tiene el mayor índice de impacto en este campo. El Grupo de Ciencias Planetarias en la Universidad del País Vasco está liderado por Agustín Sánchez Lavega, catedrático de dicha Universidad en la Escuela Técnica Superior de Ingeniería y a su vez director del Aula EspaZio Gela.
El equipo de astrónomos analizó imágenes tomadas por la sonda Cassini para medir los vientos en la “cabeza” de la tormenta, el foco donde se originó la actividad. En esa región la tormenta interacciona con la atmósfera circundante formando vientos sostenidos muy intensos con valores típicos de 500 kilómetros por hora. “No esperábamos encontrar una circulación tan violenta en la región de desarrollo de la tormenta, lo que es un síntoma de la interacción particularmente violenta entre la tormenta y la atmósfera del planeta”, comenta Enrique García. También han podido determinar que las nubes se elevan más de 40 km por encima de las nubes del propio planeta.
Información de los mecanismos que provocan otros fenómenos meteorológicos
El estudio desvela el mecanismo que genera esta fenomenología. El equipo de científicos diseñó modelos matemáticos capaces de reproducir la tormenta en un ordenador dando una explicación física del comportamiento de esta tormenta gigante y de su larga duración. Los cálculos muestran que el foco de la tormenta es profundo, unos 300 km por encima de las nubes visibles. La tormenta transportó ingentes cantidades de gas húmedo en vapor de agua a las capas más altas del planeta formando nubes visibles, y liberando enormes cantidades de energía. Esta inyección de energía interaccionó violentamente con los vientos dominantes de Saturno para producir un vendaval de 500 km/h. El estudio también mostró que, a pesar de la enorme actividad de la tormenta, esta no fue capaz de modificar sustancialmente el régimen de vientos dominante que soplan permanentemente en la misma dirección que los paralelos terrestres, pero sí interaccionó violentamente con ellos. Una parte importante de los cálculos por ordenador se realizaron gracias al Centre de Serveis Científics i Acadèmics de Catalunya (CESCA), y los medios informáticos del Institut de Ciències de l’Espai (ICE).
Más allá de la curiosidad por conocer los procesos físicos que subyacen a la formación de estas gigantescas tormentas en Saturno, el estudio de estos fenómenos permite conocer mejor los modelos empleados en el estudio de la meteorología y del comportamiento de la atmósfera terrestre, en un medio ambiente muy diferente e imposible de simular en un laboratorio. “Las tormentas de Saturno son, en cierto modo, un banco de pruebas de los mecanismos físicos que subyacen en la generación de fenómenos meteorológicos violentos semejantes en la Tierra” comenta Agustín Sánchez Lavega, director del Grupo de Ciencias Planetarias de la UPV/EHU.
Nature Geoscience es la revista especializa en geofísica, meteorología y ciencias planetarias del grupo Nature y tiene el mayor índice de impacto en este campo. El Grupo de Ciencias Planetarias en la Universidad del País Vasco está liderado por Agustín Sánchez Lavega, catedrático de dicha Universidad en la Escuela Técnica Superior de Ingeniería y a su vez director del Aula EspaZio Gela.
.
.
Referencia bibliográfica
E. García-Melendo, R. Hueso, A. Sánchez-Lavega, J. Legarreta, T. del Río-Gaztelurrutia, S. Pérez-Hoyos, J. F. Sanz-Requena. Atmospheric Dynamics of Saturn’s 2010 giant storm. Nature Goescience, 2013, DOI 10.1038/ngeo1860.
E. García-Melendo, R. Hueso, A. Sánchez-Lavega, J. Legarreta, T. del Río-Gaztelurrutia, S. Pérez-Hoyos, J. F. Sanz-Requena. Atmospheric Dynamics of Saturn’s 2010 giant storm. Nature Goescience, 2013, DOI 10.1038/ngeo1860.
.
No hay comentarios:
Publicar un comentario